

Hypokalaemia (General Wards) - Full Clinical Guideline

Reference Number: CG-T/2023/169

Introduction

This guideline applies to the management of hypokalaemia in adult patients on general wards. It does not apply to:

- renal or critical care area patients: see appropriate protocols
- as a reversible cause of cardiac arrest: manage as per ALS course materials
- diabetic ketoacidosis or hyperosmolar hyperglycaemic state: follow diabetes guidelines
- For children please see guideline available on Koha (Intravenous fluids paediatric clinical guideline reference: CH CLIN G44

Aim and purpose

To provide guidance for safe, effective potassium replacement within the general medical or surgical ward environment.

Classification of hypokalaemia:

Serum potassium	Potential symptoms	
concentration		
3.0-3.4 mmol/L mild	Usually no symptoms, *arrhythmias	
2.5-2.9 mmol/L moderate	Generalised weakness, lassitude and constipation,	
	*arrhythmias	
2.0-2.4 mmol/L severe	Muscle weakness and necrosis, myocardial infarction	
	*arrhythmias	
Less than 2.0 mmol/L	Paralysis and impairment of respiratory function,	
emergency	*arrhythmias	
* In patients with ischaemic heart disease, heart failure, or left ventricular		
hypertrophy, even mild hypokalaemia increases the likelihood of arrhythmias.		

Hypokalaemia will also exacerbate digoxin toxicity.

Treatment of hypokalaemia

Although this document offers guidance, the dose of potassium to treat hypokalaemia should be determined on an individual patient basis. Chronic hypokalaemia indicates a profound deficit in total body potassium and replacement may take several days. Failure to correct hypokalaemia despite appropriate treatment may be due to underlying hypomagnesaemia. All patient patients with hypokalaemia should have a magnesium level checked.

- 1. Correct identifiable causes:
 - decreased intake
 - increased loss
- GI losses
- urinary losses via loop/thiazide diuretics or aminoglycosides
- polydipsia/polyuria
- increased mineralocorticoid activity
- hypomagnesaemia
- review acid-base status
- consider 24hr urinary potassium level
- increased entry to cells β-agonists e.g. salbutamol, dobutamine, OTC/"slimming" sympathomimetics
 - theophyllines/xanthines (inc. caffeine)
 - alkalosis

- increased haematopoesis e.g. with GCSF, acute leukaemia

2. Replace potassium if due to decreased intake or increased loss; replace cautiously if hypokalaemia is due to increased distribution as a result of cellular uptake - potassium may subsequently return to plasma from cells causing hyperkalaemia.

Enteral replacement

Sando-K is to be used first-line for all doses over 12mmol.

Each Sando-K tablet contains 12mmol of Potassium. Sando-K tablets can be dissolved in squash or juice to mask the taste, or crushed and mixed into a small amount of soft food, like jam or honey. Sando-K are suitable for administration via enteral tubes (further detail below).

Serum potassium	Suggested oral	Suggested monitoring
concentrations	replacement	
3.0 - 3.5 mmol/L	Sando-K [®] 2 tablets	Monitor serum potassium
(mild hypokalaemia)	twice a day	every 2-3 days until stable or
	(48mmol/day)	>4.5 mmol/L, then re-assess
2.5 - 2.9 mmol/L	Sando-K [®] 2 tablets	Monitor serum potassium daily
(moderate hypokalaemia)	three times a day	until >2.9 mmol/L then
	(72mmol/day)	manage as for mild
		hypokalaemia (above).

An unlicensed potassium chloride 1mmol/ml oral solution should only be considered if there is a true intolerance to Sando-K.

Intravenous replacement

Serum potassium	Suggested IV	Suggested monitoring
concentrations	replacement	
3.0-3.4 mmol/L	20 - 40 mmol potassium	Monitor serum potassium after
(mild hypokalaemia, if	chloride in 1 litre sodium	24 hours and review
patient unable to take	chloride 0.9% over at	accordingly. Repeat infusion if
potassium enterally)	least 8 hours. Can be	appropriate. Switch to oral
	repeated up to a	management as soon as
	maximum of	practical.
	3mmol/kg/day	
2.5 – 2.9mmol/L	80 - 120mmol	Monitor serum potassium
(moderate hypokalaemia)	potassium chloride in 2 -	concentration after 24 hours
	3 litres sodium chloride	and repeat infusion if
	0.9% over 24hr, up to a	appropriate.
	maximum of	
	3mmol/kg/day	

<u><</u> 2.4 mmol/L	40 mmol potassium	Monitor serum potassium
(severe hypokalaemia	chloride in 1 litre sodium	concentration after 6 hours
and/or symptomatic)	chloride 0.9% over 6	and repeat infusion as
	hours, to repeat after	appropriate up to maximum.
	potassium level.	
	Maximum should not	
	exceed 3mmol/kg/day	

The maximum daily dose of potassium for replacement is 3mmol/kg unless significant renal impairment – use approximately half usual dose and seek renal advice. In the presence of hypomagnesaemia, magnesium should ordinarily be replaced first in order to aid distribution of potassium replacement.

The **maximum rate of infusion** in a general ward environment is **10mmol/hr**. This can be increased to 20mmol/hr provided continuous cardiac monitoring is in place. Higher rates are associated with significant risk of cardiac arrhythmia and arrest.

Potassium should be given via an infusion pump to ensure a safe rate.

The **maximum concentration** of IV potassium for general peripheral use is **40mmol/L** as per NPSA. This is due to potential for pain and phlebitis with peripheral administration.

Initial IV replacement of potassium should usually be in sodium chloride 0.9%.

This is because administration of a glucose-containing infusion will prompt a physiological insulin response causing further intracellular migration of potassium.

There is a list of commercially available potassium fluids at the end of this guide.

Potassium may be given **subcutaneously**, but this would usually be for maintenance fluids rather than replacement. This is because of the limitations on concentration and rate, and also the slow absorption by the subcutaneous route.

When given subcutaneously, the maximum potassium concentration that should be used is 40mmol/L at a maximum rate of 2L/24hr via gravity feed <u>not</u> via infusion pump.

Special cases

Fluid restriction:

Concentrations >40mmol/L should normally be given via a central line, however in fluid restricted patients administration of 60-80mmol/L via a large vein may be an option: seek senior advice.

Alternatively consider combining enteral and intravenous replacement.

Patients with **central venous access** can receive more concentrated solutions: again, **seek senior advice**.

Provision varies by site:

RDH – prepared by pharmacy outside of ICU, contact ward or on-call pharmacist QHB – can be prepared and given on CCU

Enteral administration via feeding tubes:

Intragastric (NG, PEG, RIG, NJ, Jejunostomy) – use Sando-K unless the patient has an intolerance to an excipient. Oral Potassium Chloride 1mmol/ml solutions are available but are unlicensed and are not recommended in patients requiring doses of 12mmol or more.¹ The excipients in unlicensed oral solutions may vary, so confirm with pharmacy if you need to check the excipient list. Note that liquids may contain sorbitol which will cause diarrhoea for patients with NJ/Jejunostomy, as it will enter the jejunum undigested.

¹ National Patient Safety Alert 011/2024 - Discontinuation of Kay-Cee-L Syrup

Use of diuretics

Where hypokalaemia is associated with use of loop and/or thiazide diuretics, consideration should be given to the use/addition of a potassium-sparing diuretic or aldosterone antagonist e.g. amiloride, spironolactone. This will reduce potassium losses and mitigate the need for replacement.

Commercially available potassium solutions

20mmol potassium chloride in 1L 0.9% sodium chloride 40mmol potassium chloride in 1L 0.9% sodium chloride 20mmol potassium chloride in 1L 5% glucose 20mmol potassium chloride in 500ml 5% glucose (run 2 sequentially for 40mmol/1L) 20mmol potassium chloride in 1L 0.18% sodium chloride 4% glucose 40mmol potassium chloride in 1L 0.18% sodium chloride 4% glucose

Contact your ward or on-call pharmacist to discuss options if your patient requires a more concentrated solution: provision will vary by site.

References

Adrogué HJ, Madias NE, 1981. Changes in plasma potassium concentration during acute acid-base disturbances. *Am J Med* 71:456

Buckingham R (ed), 2020. Martindale: the complete drug reference (online ed). Pharmaceutical Press. *Potassium*. Accessed via http://www.medicinescomplete.com on 20/11/2023

Foreman JW, 2023. *Hypokalemia – approach to the patient*. EBSCO Information Services. Accessed via http://www.dynamed.com on 20/11/2023

Freedman BI, Burkart JM, 1991. Hypokalemia. Crit Care Clin 7:143-53

Gennari FJ, 1998. Hypokalemia. N Engl J Med 339:451-8

Goldenberg IF, Olivari MT, Levine TB, Cohn JN, 1989. Effect of dobutamine on plasma potassium in congestive heart failure secondary to idiopathic or ischemic cardiomyopathy. *Am J Cardiol* 63:843

Kraft MD, Btaiche IF, Sacks GS, Kudsk KA, 2005. Treatment of electrolyte disorders in adult patients in the intensive care unit. *Am J Health-Syst Pharm* 62:1663-82

Kunau RT, Stein JH, 1977. Disorders of hypo and hyperkalemia. Clin Nephrol. 7:173-90

Mount DB, 2021. *Clinical manifestations and treatment of hypokalemia in adults*. Wolters Kluwer. Accessed via http://www.uptodate.com on 20/11/2023

Mount DB, 2021. *Evaluation of the adult patient with hypokalemia*. Wolters Kluwer. Accessed via http://www.uptodate.com on 20/11/2023

Mount DB, 2022. *Causes of hypokalemia in adults*. Wolters Kluwer. Accessed via http://www.uptodate.com on 20/11/2023

National Patient Safety Agency (NPSA), 2002. *Patient safety alert: potassium chloride concentrate solutions*. Accessed via http://www.sps.nhs.uk on 09/07/2020

National Institute for Clinical Excellence (NICE), 2013. CG174 Intravenous fluid therapy in adults in hospital, last updated May 2017. Accessed via http://www.nice.org.uk on 20/11/2023

UKMI, 2014. Q&A 412.1 *How is hypokalaemia treated in adults?* Accessed via http://www.sps.nhs.uk on 10/06/2020

UKMI, 2016. Q&A 47.5 *Can potassium be given by subcutaneous infusion?* Accessed via http://www.sps.nhs.uk 09/07/2020

UKMI, 2020. Q&A *How should intravenous potassium chloride be administered in adults?* Accessed via http://www.sps.nhs.uk on 20/11/2023

de Wijkerslooth LR, Koch BC, Malingré MM, 2008. Life-threatening hypokalaemia and lactate accumulation after autointoxication with Stacker 2, a "powerful slimming agent". *Br J Clin Pharmacol* 66:728

Wong CS, Pavord ID, Williams J, 1990. Bronchodilator, cardiovascular and hypokalaemic effects of fenoterol, salbutamol and terbutaline in asthma. *Lancet* 336:1396

Documentation	controls:
----------------------	-----------

Development of guidelines	Thomas Morley, Lead Medicines Information Pharmacist
Consultation with	Clinical Pharmacy Team
Approved by	Trust Clinical Guidelines Group December 2023 Minor amendment for oral options as per NatPSA 011/2024 (Clinical Guidelines Group October 2024)
Review date	September 2026
Key contact	Thomas Morley, Lead Medicines Information Pharmacist
Keywords	Hypokalaemia potassium